{ "cells": [ { "cell_type": "markdown", "id": "ea93e76e", "metadata": {}, "source": [ "# Interpretting Regression" ] }, { "cell_type": "code", "execution_count": 1, "id": "fa5a64e9", "metadata": {}, "outputs": [], "source": [ "import matplotlib.pyplot as plt\n", "import seaborn as sns\n", "import numpy as np\n", "import pandas as pd\n", "import itertools as itr\n", "from sklearn import datasets, linear_model\n", "from sklearn.metrics import mean_squared_error, r2_score\n", "from sklearn.model_selection import cross_val_score\n", "from sklearn.model_selection import train_test_split\n", "from sklearn.preprocessing import PolynomialFeatures\n", "sns.set_theme(font_scale=2,palette='colorblind')" ] }, { "cell_type": "markdown", "id": "e1acdaf9", "metadata": {}, "source": [ "we'll return to the same data we used on Monday, first." ] }, { "cell_type": "code", "execution_count": 2, "id": "33d485e6", "metadata": {}, "outputs": [], "source": [ "tips = sns.load_dataset(\"tips\").dropna()" ] }, { "cell_type": "code", "execution_count": 3, "id": "6a421364", "metadata": {}, "outputs": [ { "data": { "text/plain": [ "(244, 7)" ] }, "execution_count": 3, "metadata": {}, "output_type": "execute_result" } ], "source": [ "tips.shape" ] }, { "cell_type": "code", "execution_count": 4, "id": "a5c2fabb", "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", " | total_bill | \n", "tip | \n", "sex | \n", "smoker | \n", "day | \n", "time | \n", "size | \n", "
---|---|---|---|---|---|---|---|
0 | \n", "16.99 | \n", "1.01 | \n", "Female | \n", "No | \n", "Sun | \n", "Dinner | \n", "2 | \n", "
1 | \n", "10.34 | \n", "1.66 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "3 | \n", "
2 | \n", "21.01 | \n", "3.50 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "3 | \n", "
3 | \n", "23.68 | \n", "3.31 | \n", "Male | \n", "No | \n", "Sun | \n", "Dinner | \n", "2 | \n", "
4 | \n", "24.59 | \n", "3.61 | \n", "Female | \n", "No | \n", "Sun | \n", "Dinner | \n", "4 | \n", "